NORE1A Regulates MDM2 Via β-TrCP.
نویسندگان
چکیده
Mouse Double Minute 2 Homolog (MDM2) is a key negative regulator of the master tumor suppressor p53. MDM2 regulates p53 on multiple levels, including acting as an ubiquitin ligase for the protein, thereby promoting its degradation by the proteasome. MDM2 is oncogenic and is frequently found to be over-expressed in human tumors, suggesting its dysregulation plays an important role in human cancers. We have recently found that the Ras effector and RASSF (Ras Association Domain Family) family member RASSF5/NORE1A enhances the levels of nuclear p53. We have also found that NORE1A (Novel Ras Effector 1A) binds the substrate recognition component of the SCF-ubiquitin ligase complex β-TrCP. Here, we now show that NORE1A regulates MDM2 protein levels by targeting it for ubiquitination by SCF-β-TrCP. We also show the suppression of NORE1A protein levels enhances MDM2 protein expression. Finally, we show that MDM2 can suppress the potent senescence phenotype induced by NORE1A over-expression. Thus, we identify a mechanism by which Ras/NORE1A can modulate p53 protein levels. As MDM2 has several important targets in addition to p53, this finding has broad implications for cancer biology in tumor cells that have lost expression of NORE1A due to promoter methylation.
منابع مشابه
DNA damage-induced activation of ATM promotes β-TRCP-mediated Mdm2 ubiquitination and destruction
The Mdm2 oncoprotein promotes p53 ubiquitination and destruction. Yet, exact molecular mechanisms of Mdm2 destruction itself, under DNA damaging conditions, remain unclear. Recently, we identified SCFβ-TRCP as a novel E3 ligase that targets Mdm2 for ubiquitination and destruction in a Casein Kinase Iδ (CKIδ)-dependent manner. However, it remains elusive how the β-TRCP/CKIδ/Mdm2 signaling axis i...
متن کاملNovel Insights into the Molecular Mechanisms Governing Mdm2 Ubiquitination and Destruction
The Mdm2/p53 pathway is compromised in more than 50% of all human cancers, therefore it is an intensive area of research to understand the upstream regulatory pathways governing Mdm2/p53 activity. Mdm2 is frequently overexpressed in human cancers while the molecular mechanisms underlying the timely destruction of Mdm2 remain unclear. We recently reported that Casein Kinase I phosphorylates Mdm2...
متن کاملSCFβ-TRCP regulates osteoclastogenesis via promoting CYLD ubiquitination
CYLD negatively regulates the NF-κB signaling pathway and osteoclast differentiation largely through antagonizing TNF receptor-associated factor (TRAF)-mediated K63-linkage polyubiquitination in osteoclast precursor cells. CYLD activity is controlled by IκB kinase (IKK), but the molecular mechanism(s) governing CYLD protein stability remains largely undefined. Here, we report that SCFβ-TRCP reg...
متن کاملDual degradation signals destruct GLI1: AMPK inhibits GLI1 through β-TrCP-mediated proteasome degradation
Overexpression of the GLI1 gene has frequently been found in various cancer types, particularly in brain tumors, in which aberrant GLI1 induction promotes cancer cell growth. Therefore, identifying the molecular players controlling GLI1 expression is of clinical importance. Previously, we reported that AMPK directly phosphorylated and destabilized GLI1, resulting in the suppression of the Hedge...
متن کاملβ-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H
CREB-H is an endoplasmic reticulum-resident bZIP transcription factor which critically regulates lipid homeostasis and gluconeogenesis in the liver. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminally truncated form known as CREB-H-ΔTC, which translocates to the nucleus to activate target gene expression. CREB-H-ΔTC is a fast turnover protein bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancers
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2016